
Electronic Design Automation (EDA) tool
development: Performance enhancements to
circuit extraction

Rithvik Bhogavilli
January 10, 2021

Mr. R. Tim Edwards



Background



Overview of Magic

• Very Large Scale Integration (VLSI) Layout Tool
• Open source

• Used by universities and open source developers

• Composed of design viewer and console

1



2



3



Comparison to Other VLSI Layout Tools

Caesar or KIC2:

• Minimal support in routing features
• Hard to change a design once loaded

Magic:

• Increased design knowledge
• Easier to modify designs

4



Issues

• Magic is built for smaller
designs

• Moore’s Law
• Labels

• Store information on
their associated cell

• Must be referenced by
name or location

• Labels are stored in a
linked list

5



Linked Lists

• Each node keeps
reference to next

• Time complexity:
• Search: O(n)
• Insertion: O(1)
• Deletion: O(n)

6



Solution



Hash Table

• Hash algorithm sorts
items by index

• Collisions resolved
through chaining

• Time complexity:
• Search: O(1)
• Insertion: O(1)
• Deletion: O(1)

7



Binned Plane (bplane)

• 2D hash table
• Cells track information

about labels in the region
• Labels have near equal

size and spatial
distribution

8



Methods



Measuring Performance

• Linux Perf tool used
• Sampling rate of 100 per second
• Generates time spent per function

• Flame graph generated
• Gives proportion of time spent on given function

9



10



Methods

1. striVe chip loaded into Magic
2. Command of interest is run
3. Performance measured at 100 samples per second
4. Magic is recompiled with optimizations
5. Performance measured at 100 samples per second
6. Flame graph generated for analysis

11



Selecting Areas for Optimization

Based on previous experience in loading large designs

Chosen Areas:

• Extraction
• Net Selection
• Label Search by Content

12



Areas of Optimization



Extraction

• extract all command extracts into .ext file
• Functions were found to be searching all labels
• plane added to CellDef

• Properties for the cell, includes label storage

• extSubtreeFunc and extHierConnections found to be of
concern

13



Net Selection

• select clear used to analyze
• DBTreeSrLabels found to take most time
• TF_LABEL_ATTACH and TF_LABEL_DISPLAY flags for

labels
• Requires use of bplane and linked list

14



Label Filtering by Content

• select short command used for profiling
• Used because it relies on label names

• Hash table added to CellDef
• Hash table iteration implemented in

DBCheckLabelsByContent

15



Results



Extraction

16



Extraction

17



Net Selection

18



Net Selection

19



Label Filtering by Content

• Perf did not detect content searching function
• Sampling rate of 30,000 samples per second

• Confirmed to run using gdb
• Original complexity was O(n)

• Likely to not detect O(1)

20



Conclusions



Conclusions

• General decrease in time spent on functions
• Added overhead in extraction

• Added class initialization for bplane

• Net selection may not have been fully tested with striVe

21



Future Work

• Use a wider variety of chips
• Designs used might not test all cases

• Improve profiling
• Profiling is manually stopped

22



Acknowledgements

Thank you to Mr. Edwards for pointing me in the right direction
for optimizations and providing feedback.

Thank you to my teachers and friends.

23



Questions?


	Background
	Solution
	Methods
	Areas of Optimization
	Results
	Conclusions

