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Purpose

The purpose of the research was to optimize the Magic VLSI Layout Tool to accommodate larger

chip designs. Chip designs have labels which store information on their given cells along with

their locations. Currently, Magic uses a linked list to hold the labels which has a time complexity

of O(n), making it inefficient for larger designs. Magic requires that labels be accessed by location

or content. Therefore, the goal of this research is to optimize the current label storage for both

access by location and content.

Background

Magic is a VLSI (Very Large Scale Integration) Layout tool intended for chip design. This tool is

easier to use than layout tools of the past due to its increased knowledge of design rules and

connectivity. Previous tools such as Caesar and KIC2 had been used for various smaller layouts

but provided little support in assiting with routing on chip designs, making the process error prone

(Ousterhout et al., 1984).

Figure: Original trajectory predicted by Moore, taken

from Moore, 1998

Chips have been increasing in complexity and

size as per Moore's Law (Moore, 1998). There-

fore, the chip design tools need to adapt to ac-

commodate these designs. Magic stores infor-

mation on the design through labels, which de-

scribe the structure of the cell. Labels are used

by the synthesis tools to communicate informa-

tion about the given area. Labels are accessed

inside of the synthesis tool both by region and

by name. Thus, there must be two data struc-

tures used to access the labels associated with

a file. The current implementation to store the

labels is a linked list, creating a bottleneck when

trying to load designs. The proposed solution is

to use a hash table for storing labels by content

and a binned plane for label storage by location.

Data Structures

Linked Lists
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Figure: Sample linked list. Each node

carries a value and a reference to the

next node. Figure uses sample data.

Search and deletion have time

complexity of O(n). This is not
optimal for larger designswhere

there can be hundreds of thou-

sands of labels.

Hash Tables

0 → 110

1 → 100

2 → 93 → 60

Figure: Sample hash table. Elements

are indexed using a hash. Chaining is

used to manage collisions. Figure

uses sample data.

Theoretical time complexity of

O(1) for all operations. So, the
performance of the table will

not be affected by increasing

chip design size.

Binned Planes

Figure: Sample binned collection.

Each cell maintains a list of all

rectangles intersecting it. Figure uses

sample data.

Optimal solution because labels

are almost completely equal in

size and distribution.

Circuit Extraction

The first area of optimization was extraction, which is the generation of a netlist file showing the cells and their

connections. The extract all command in Magic extracts all cells in the window and outputs them into an .ext

file. With the striVe chip loaded into Magic, perf was run with a sampling rate of 99 samples per second during

extraction. Upon generating a flame graph, ExtFreeLabRegions, ExtLabelRegions, and extHierConnections were

found to consume the most time. The bplane enumeration was added to the extHierConnections function in place

of the linked list iteration, leading to the following results:
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Figure: Figure taken from collected data
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Figure: Figure taken from collected data

Net Selection

The second area of consideration for optimization was Net Selection. When a net is selected,

Magic finds the connected geometry for the net and in the process. During net selection, the

DBTreeSrLabels which recursively searched for all labels with a given mask, took the most time.

This function checked two flags: TF_LABEL_ATTACH and TF_LABEL_DISPLAY. TF_LABEL_DIS-

PLAY looked for labels that where either lab_rect or lab_bbox is in the search area while the other,

TF_LABEL_ATTACH, looked for labels where lab_rect was in the search area. Since the bplane

enumeration could only see if lab_rect was in the search area, both the bplane and the linked list

had to be used depending on what flag was being used. This led to the following results:
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Figure: Figure taken from collected data
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Figure: Figure taken from collected data

Label Filtering by Content

Locating labels by name was done through the DBCheckLabelsByContent function. The hash

table implementation was used for filtering labels by their content. It was added alongside the

binned plane in the cell definition and was populated alongside the binned plane. The hash table

was then used in place of the linked list iterator in the function. The binned plane would still

need to be used during label filtering by content to resolve collisions because labels are unique

by location. The select short command was used in testing because it located labels by name to

detect a short.

Results

With all errors resolved in extraction, time spent in a recording period on the extHierConnections

function went from 22.58% to 1.01%. With the added bplane implementation, there was no

noticeable difference, but this was because only one sample was detected for the extHierCon-

nections function.

For net selection, after implementing the bplane data structure, there was a 15% improvement in

the performance. Originally accounting for 97.27% of CPU cycles, the DBTreeSrLabels function

decreased in run time to 83.84%.

For label filtering by content, the effects of the changes could not be measured due to the perf

tool not finding a sample in the recording with the DBCheckLabelsByContent function in it with

a sampling rate of 30,000. Theoretically, there would be a performance enhancement because

the hash table has a search complexity of O(1) compared to the O(n) of the linked list.

Conclusions

Although testing of the optimizations of the program were limited to the striVe and AES chip,

initial results have been favorable. There was a general decrease in the amount of time spent on

extraction, net selection, and theoretically filtering by content using the binned plane and hash

table implementations. For the extHierConnections function, after correcting the optimizations,

there was a decrease of 21.47% in the time spent on the function. However, taking the entire

execution into account, there was added overhead involved. The use of another class for the

bplane enumeration meant that more time was spent on instantiation, however this would be a

worthwile tradeoff for larger designs.

For net selection, the smaller difference in time spent could have been attributed to the fact that

not all of the labels can be handled by the bplane implementation. For the striVe chip, there

might still have been many more instances where the linked list could have been traversed, and

therefore lead to a not as significant decrease in the time spent on the function as before.

With the optimizations implemented, Magic will be able to handle larger chip designs and allow

developers to interact with them at an increased speed.

FutureWork

For the future, a wider variety of chips could be used in testing the effectiveness of the optimiza-

tions discussed in the paper in order to ensure that they do not only apply to the AES or striVe

chip. A limiting factor in assessing the performance of the commands run was having to stop the

performance recording. Because the recording had to be manually stopped, in some instances,

idle time overshadowed the recording of Magic, making the flame graphs less detailed because

of the relatively less time spent on the functions of interest.
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